Phylogenomics reveals an extensive history of genome duplication in diatoms (Bacillariophyta)

Author:

Parks Matthew,Nakov Teofil,Ruck Elizabeth,Wickett Norman J.,Alverson Andrew J.ORCID

Abstract

ABSTRACTPremise of the studyDiatoms are one of the most species-rich lineages of microbial eukaryotes. Similarities in clade age, species richness, and contributions to primary production motivate comparisons to flowering plants, whose genomes have been inordinately shaped by whole genome duplication (WGD). These events that have been linked to speciation and increased rates of lineage diversification, identifying WGDs as a principal driver of angiosperm evolution. We synthesized a relatively large but scattered body of evidence that, taken together, suggests that polyploidy may be common in diatoms.MethodsWe used data from gene counts, gene trees, and patterns of synonymous divergence to carry out the first large-scale phylogenomic analysis of genome-scale duplication histories for a phylogenetically diverse set of 37 diatom taxa.Key resultsSeveral methods identified WGD events of varying age across diatoms, though determining the exact number and placement of events and, more broadly, inferences of WGD at all, were greatly impacted by gene-tree uncertainty. Gene-tree reconciliations supported allopolyploidy as the predominant mode of polyploid formation, with particularly strong evidence for ancient allopolyploid events in the thalassiosiroid and pennate diatom clades.ConclusionsWhole genome duplication appears to have been an important driver of genome evolution in diatoms. Denser taxon sampling will better pinpoint the timing of WGDs and likely reveal many more of them. We outline potential challenges in reconstructing paleopolyploid events in diatoms that, together with these results, offer a framework for understanding the evolutionary roles of genome duplication in a group that likely harbors substantial genomic diversity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3