Improving genomic selection in hexaploid wheat with sub-genome additive and epistatic models

Author:

Tessele Augusto,González-Diéguez David O.,Crossa JoseORCID,Johnson Blaine E.,Morris Geoffrey P.ORCID,Fritz Allan K.

Abstract

AbstractThe goal of wheat breeding is the development of superior cultivars tailored to specific environments, and the identification of promising crosses is crucial for the success of breeding programs. Although genomic estimated breeding values were developed to estimate additive effects of genotypes before testing as parents, application has focused on predicting performance of candidate lines, ignoring non-additive genetic effects. However, non-additive genetic effects are hypothesized to be especially importance in allopolyploid species due to the interaction between homeologous genes. The objectives of this study were to model additive and additive-by-additive epistatic effects to better delineate the genetic architecture of grain yield in wheat and to the improve accuracy of genomewide predictions. The dataset utilized consisted of 3740 F5:6experimental lines tested in the K-State wheat breeding program across the years 2016 and 2018. Covariance matrices were calculated based on whole and sub-genome marker data and the natural and orthogonal interaction approach (NOIA) was used to estimate variance components for additive and additive-by-additive epistatic effects. Incorporating epistatic effects in additive models resulted in non-orthogonal partitioning of genetic effects but increased total genetic variance and reduced DIC. Estimation of sub-genome effects indicated that genotypes with the greatest whole genome effects often combine sub-genomes with intermediate to high effects, suggesting potential for crossing parental lines which have complementary sub-genome effects. Modeling epistasis in either whole-genome or sub-genome models led to a marginal (3%) but significant improvement in genomic prediction accuracy, which could result in significant genetic gains across multiple cycles of breeding.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3