Computational flow cytometry immunophenotyping at diagnosis is unable to predict relapse in childhood B-cell Acute Lymphoblastic Leukemia

Author:

Martínez-Rubio ÁlvaroORCID,Chulián SalvadorORCID,Niño-López AnaORCID,Picón-González Rocío,Rodríguez Gutiérrez Juan F.ORCID,Gálvez de la Villa Eva,Caballero Velázquez TeresaORCID,Molinos Quintana ÁguedaORCID,Castillo Robleda Ana,Ramírez Orellana ManuelORCID,Martínez Sánchez María VictoriaORCID,Minguela Puras AlfredoORCID,Fuster Soler José LuisORCID,Blázquez Goñi CristinaORCID,Pérez-García Víctor M.ORCID,Rosa MaríaORCID

Abstract

SUMMARYB-cell Acute Lymphoblastic Leukemia is the most prevalent form of childhood cancer, with approximately 15% of patients undergoing relapse after initial treatment. Further advancements depend on novel therapies and more precise risk stratification criteria. In the context of computational flow cytometry and machine learning, this paper aims to explore the potential prognostic value of flow cytometry data at diagnosis, a relatively unexplored direction for relapse prediction in this disease. To this end, we collected a dataset of 252 patients from three hospitals and implemented a comprehensive pipeline for multicenter data integration, feature extraction, and patient classification, comparing the results with existing algorithms from the literature. The analysis revealed no significant differences in immunophenotypic patterns between relapse and non-relapse patients and suggests the need for alternative approaches to handle flow cytometry data in relapse prediction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3