Sequential and dynamic coding of water-sucrose categorization in rat gustatory cortices

Author:

Mendoza Germán,Fonseca Esmeralda,Merchant Hugo,Gutierrez RanierORCID

Abstract

SummaryThe gustatory system underlies our conscious perception of sweetness and allows us to distinguish a sweet solution from plain water. However, the neural mechanisms in gustatory cortices that enable rats to differentiate sweetness from water remain elusive. In this study, we designed a novel sucrose categorization task in which rats classified water from a gradient of sucrose solutions. We found that in the anterior Insular Cortex (aIC) and the Orbitofrontal Cortex (OFC), neural activity prioritized encoding the categorization of water versus sucrose rather than the specific concentrations within the sucrose solutions. aIC neurons more rapidly encoded sucrose/water distinction, followed by the OFC. In contrast, the OFC encoded choice information slightly earlier than aIC, but both gustatory cortices maintained a comparable encoding of the rat’s choices in parallel. The encoding of sensory and categorical decisions was dynamic and sequentially encoded, forming a sequence of encoding neurons spanning the entire length of a task trial. Our results demonstrate that sucrose categorization relies on dynamic encoding sequences in the neuronal activity of aIC and the OFC rather than static, long-lasting (sustained) neural representations. Single-cell, population decoding, and principal component analyses confirmed our results. This aligns with the concept of a dynamic code, where the brain updates its representation of sucrose categorization as new information becomes available. Additionally, aIC and the OFC rapidly encoded reward outcomes. Our data supports the view that gustatory cortices use sequential and dynamic coding to compute sensorimotor transformations from taste detection to encoding categorical taste decisions and reward outcomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3