Generative Modeling of the Circle of Willis Using 3D-StyleGAN

Author:

Aydin Orhun Utku,Hilbert Adam,Koch Alexander,Lohrke Felix,Rieger Jana,Tanioka Satoru,Frey DietmarORCID

Abstract

AbstractThe circle of Willis (CoW) is a network of cerebral arteries with significant inter-individual anatomical variations. Deep learning has been used to characterize and quantify the status of the CoW in various applications for the diagnosis and treatment of cerebrovascular disease. In medical imaging, the performance of deep learning models is limited by the diversity and size of training datasets. To address medical data scarcity, generative adversarial networks (GANs) have been applied to generate synthetic vessel neuroimaging data. However, the proposed methods produce synthetic data with limited anatomical fidelity or downstream utility in tasks concerning vessel characteristics.We adapted the StyleGANv2 architecture to 3D to synthesize Time-of-Flight Magnetic Resonance Angiography (TOF MRA) volumes of the CoW. For generative modeling, we used 1782 individual TOF MRA scans from 6 open source datasets. To train the adapted 3D StyleGAN model with limited data we employed differentiable data augmentations and used mixed precision and a cropped region of interest of size 32×128×128 to tackle computational constraints. The performance was evaluated quantitatively using the Fréchet Inception Distance (FID), MedicalNet distance (MD) and Area Under the Curve of the Precision and Recall Curve for Distributions (AUC-PRD). Qualitative analysis was performed via a visual Turing test. We demonstrated the utility of generated data in a downstream task of multiclass semantic segmentation of CoW arteries. Vessel segmentation performance was assessed quantitatively using the Dice coefficient and the Hausdorff distance.The best-performing 3D StyleGANv2 architecture generated high-quality and diverse synthetic TOF MRA volumes (FID: 12.17, MD: 0.00078, AUC-PRD: 0.9610). Multiclass vessel segmentation models trained on synthetic data alone achieved comparable performance to models trained using real data in most arteries.In conclusion, generative modeling of the Circle of Willis via synthesis of 3D TOF MRA data paves the way for generalizable deep learning applications in cerebrovascular disease. In the future, the extensions of the provided methodology to other medical imaging problems or modalities with the inclusion of pathological datasets has the potential to advance the development of more robust models for clinical applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3