Aging shapes infection profiles of influenza A virus and SARS-CoV-2 in human lung slices

Author:

Brügger Melanie,Machahua Carlos,Zumkehr Beatrice,Cismaru Christiana,Jandrasits Damian,Dorn Patrick,Marti Thomas M.,Zimmer GertORCID,Thiel Volker,Funke-Chambour Manuela,Alves Marco P.ORCID

Abstract

ABSTRACTThe recent coronavirus disease 2019 (COVID-19) outbreak revealed the susceptibility of elderly patients to respiratory virus infections, showing cell senescence or subclinical persistent inflammatory profiles and favouring the development of severe pneumonia. In our study, we evaluated the potential influence of lung aging on the efficiency of replication of influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as determined the pro-inflammatory and antiviral responses of the distal lung tissue. Using precision-cut lung slices (PCLS) from donors of different ages, we found that pandemic H1N1 and avian H5N1 IAV replicated in the lung parenchyma with high efficacy. In contrast to these IAV strains, SARS-CoV-2 early isolate and Delta variant of concern (VOC) replicated less efficiently in PCLS. Interestingly, both viruses showed reduced replication in PCLS from older compared to younger donors, suggesting that aged lung tissue represents a sub-optimal environment for viral replication. Regardless of the age-dependent viral loads, PCLS responded to infection with both viruses by an induction of IL-6 and IP-10/CXCL10 mRNAs, being highest for H5N1. Finally, while SARS-CoV-2 infection was not causing detectable cell death, IAV infection caused significant cytotoxicity and induced significant early interferon responses. In summary, our findings suggest that aged lung tissue might not favour viral dissemination, pointing to a determinant role of dysregulated immune mechanisms in the development of severe disease.New & NoteworthyPCLS from donors of varying ages were exposed to SARS-CoV-2 or IAV. Notably, the latter exhibited the highest replication efficacy, triggering early interferon responses, elevated IL-6 and IP-10/CXCL10 mRNAs expression, and significant cell death compared to SARS-CoV-2. Overall, across all age groups, the pulmonary environment showed sustained immunocompetence. For both viruses, older donor-derived PCLS displayed reduced viral permissiveness, suggesting aged lung tissue might not favour viral dissemination, implying other factors contribute to severe disease development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3