Perfusion-Independent Tissue Hypoxia in Cardiac Hypertrophy in Mice Measured by64Cu-CTS PET Imaging

Author:

Baark Friedrich,Michaels Aidan M.,Waters Edward C. T.,Rigby Alex,Kim Jana,Yu Zilin,Pell Victoria R.,Clark James E.,Blower Philip J.,Eykyn Thomas R.,Southworth RichardORCID

Abstract

AbstractBackgroundHypoxia is central to many cardiac pathologies, but clinically its presence can only be inferred by indirect biomarkers including hypoperfusion and energetic compromise. Imaging hypoxia directly could offer new opportunities for the diagnosis and sub-stratification of cardiovascular diseases.ObjectivesTo determine whether [64Cu]CuCTS Positron Emission Tomography (PET) can identify hypoxia in a murine model of cardiac hypertrophy.MethodsMale C57BL/6 mice underwent abdominal aortic constriction (AAC) to induce cardiac hypertrophy, quantified by echocardiography over 4 weeks. Hypoxia and perfusion were quantified in vivo using [64Cu]CuCTS and [64Cu]CuGTSM PET, respectively, and radiotracer biodistribution was quantified post-mortem. Cardiac radiotracer retention was correlated with contractile function (measured by echocardiography), cardiac hypertrophy (measured by histology), HIF-1α stabilization and NMR-based metabolomics. The effect of anesthesia on [64Cu]CuCTS uptake was additionally investigated in a parallel cohort of mice injected with radiotracer while conscious.ResultsHearts showed increased LV wall thickness, reduced ejection fraction and fractional shortening following AAC. [64Cu]CuCTS retention was 317% higher in hypertrophic myocardium (p<0.001), despite there being no difference in perfusion measured by64CuGTSM. Radiotracer retention correlated on an animal-by-animal basis with severity of hypertrophy, contractile dysfunction, HIF1α stabilization and metabolic signatures of hypoxia. [64Cu]CuCTS uptake in hypertrophic hearts was significantly higher when administered to conscious animals.Conclusions[64Cu]CuCTS PET can quantify cardiac hypoxia in hypertrophic myocardium, independent of perfusion, suggesting the hypoxia is caused by increased oxygen diffusion distances at the subcellular level. Alleviation of cardiac workload by anesthesia in preclinical models partially alleviates this effect.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3