Comprehensive Noise Reduction in Single-Cell Data with the RECODE Platform

Author:

Imoto YusukeORCID

Abstract

AbstractSingle-cell sequencing generates vast amounts of genomic and epigenomic data from thousands of individual cells and can reveal insights into biological principles at the single-cell resolution. However, challenges such as technical noise (dropout) and batch effects hinder obtaining high-resolution structures that are essential for tasks such as the identification of rare cell types and dataset comparison across different cultures. Here, I introduceintegrative RECODE (iRECODE), a comprehensive method for noise reduction that is based on the RECODE platform, which targets the technical noise in single-cell RNA-sequencing data using high-dimensional statistics. I show iRECODE effectively mitigates both technical and batch noise with high accuracy and low computational cost. Additionally, the application of RECODE extended to other single-cell sequencing data types including single-cell Hi-C and spatial transcriptomics data and the recent enhancements in RECODE have markedly improved its accuracy and computational efficiency. Thus, the RECODE platform presents a robust solution for mitigating noise in single-cell sequencing, offering promise for advancing our understanding of biological phenomena beyond transcriptomics, encompassing epigenomic and spatial transcriptomic domains.

Publisher

Cold Spring Harbor Laboratory

Reference24 articles.

1. A. Regev , S. A Teichmann , E. S Lander , et al. The human cell atlas. eLife, 6, 2017.

2. Consortium The Tabula Sapiens. The tabula sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, 376(6594), 2022.

3. D. Lähnemann , Johannes Köster , Ewa Szczurek , et al. Eleven grand challenges in single-cell data science. Genome Biology, 21(1), 2020.

4. Geometric representation of high dimension, low sample size data;Journal of the Royal Statistical Society Series B-Statistical Methodology,2005

5. PCA Consistency for Non-Gaussian Data in High Dimension, Low Sample Size Context

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3