Abstract
AbstractThe most well-studied epigenetic marker in humans is the 5-methyl modification of cytosine in DNA, which has great potential as a disease biomarker in liquid biopsies of cell-free DNA. Currently, quantification of DNA methylation relies heavily on bisulfite conversion followed by PCR amplification and NGS or microarray analysis. PCR is subject to potential bias in differential amplification of bisulfite-converted methylatedversusunmethylated sequences. Here, we combine bisulfite conversion with single-molecule kinetic fingerprinting to develop an amplification-free assay for DNA methylation at the branched-chain amino acid transaminase 1 (BCAT1) promoter. Our assay selectively responds to methylated sequences with a limit of detection below 1 fM and a specificity of 99.9999%. Evaluating complex genomic DNA matrices, we reliably distinguish 2-5% DNA methylation at the BCAT1 promoter in whole blood DNA from completely unmethylated whole-genome amplified DNA. Taken together, these results demonstrate the feasibility and sensitivity of our amplification-free, single-molecule quantification approach to improve the early detection of methylated cancer DNA biomarkers.
Publisher
Cold Spring Harbor Laboratory