Creative tempo: Spatiotemporal dynamics of the default mode network in improvisational musicians

Author:

Watters HarrisonORCID,Fazili Abia,Daley Lauren,Belden Alex,LaGrow TJ,Bolt Taylor,Loui PsycheORCID,Keilholz Shella

Abstract

AbstractThe intrinsic dynamics of human brain activity display a recurring pattern of anti-correlated activity between the default mode network (DMN), associated with internal processing and mentation, and task positive regions, associated with externally directed attention. In human functional magnetic resonance imaging (fMRI) data, this anti-correlated pattern is detectable on the infraslow timescale (<0.1 Hz) as a quasi-periodic pattern (QPP). While the DMN is implicated in creativity and musicality in traditional time-averaged functional connectivity studies, no one has yet explored how creative training may alter dynamic spatiotemporal patterns involving the DMN such as QPPs. In the present study, we compare the outputs of two QPP detection approaches, sliding window algorithm and complex principal components analysis (cPCA). We apply both methods to an existing dataset of musicians captured with resting state fMRI, grouped as either classical, improvisational, or minimally trained non-musicians. The original time-averaged functional connectivity (FC) analysis of this dataset used improvisation as a proxy for creative thinking and found that the DMN and visual networks (VIS) display higher connectivity in improvisational musicians. We expand upon this dataset’s original study and find that QPP analysis detects convergent results at the group level with both methods. In improvisational musicians, dynamic functional correlation in the group-averaged QPP was found to be increased between the DMN-VIS and DMN-FPN for both the QPP algorithm and complex principal components analysis (cPCA) methods. Additionally, we found an unexpected increase in FC in the group-averaged QPP between the dorsal attention network and amygdala in improvisational musicians; this result was not reported in the original seed-based study of this dataset. The current study represents a novel application of two dynamic FC detection methods with results that replicate and expand upon previous seed-based FC findings. The results show the robustness of both the QPP phenomenon and its detection methods. This study also demonstrates the value of dynamic FC methods in reproducing seed-based findings and their promise in detecting group-wise or individual differences that may be missed by traditional seed-based resting state fMRI studies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3