Molecular responses of chicken embryos to maternal heat stress through DNA methylation and gene expression

Author:

Karami KeyvanORCID,Sabban Jules,Cerutti ChloéORCID,Devailly GuillaumeORCID,Foissac SylvainORCID,Gourichon David,Hubert Alexandre,Hubert Jean-Noël,Leroux Sophie,Zerjal Tatiana,Lagarrigue SandrineORCID,Pitel FrédériqueORCID

Abstract

AbstractClimate change, with its repercussions on agriculture, is one of the most important adaptation challenges for livestock production. Poultry production is a major source of proteins for human consumption all over the world. With a growing human population, improving poultry’s adaptation to environmental constraints becomes critical. Extensive evidence highlights the influence of environmental variations on epigenetic modifications. The aim of this paper is therefore to explore chickens’ molecular response to maternal heat stress. We employed Reduced Representation Bisulfite Sequencing (RRBS) to generate genome-wide single-base resolution DNA methylation profiling and RNA sequencing (RNA-seq) to profile the transcriptome of the brains of embryos hatched from dams reared under either heat stress (32 °C) or thermoneutrality (22°C). We detected 289 significant differentially methylated CpG sites (DMCs) and one differentially methylated region (DMR) between heat stressed and control groups. These DMCs were associated with 357 genes involved in processes such as cellular response to stimulus, developmental processes and immune function. In addition, we identified 11 genes differentially expressed between the two groups of embryos, and identified ATP9A as a target gene of maternal heat stress on offspring. This study provides a body of fundamental knowledge on adaptive mechanisms concerning heat tolerance in chickens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3