The gut microbiome associated with LGI1- and CASPR2-antibody encephalitis

Author:

Gilbert EdmundORCID,Binks SophieORCID,Damato Valentina,Uy Christopher,Colmenero Paula,Khalil Mohamed Ibrahim,O’Brien Marcus,Claesson Marcus,Cryan John F,Delanty Norman,Irani Sarosh RORCID,Cavalleri Gianpiero L

Abstract

AbstractAutoimmune encephalitis is a cause of brain inflammation characterised by auto-antibodies which target cell surface neuronal proteins, and lead to neuronal dysfunction. In older people, common forms are encephalitis with autoantibodies to leucine-rich glioma inactivated protein 1 (LGI1) and contactin associated protein like 2 (CASPR2), whose presentation includes frequent focal seizures. The exact cause of these autoantibodies remain unknown, but established predispositions include overrepresented human leukocyte antigen (HLA) alleles. Yet, these alleles are themselves common in the healthy ancestry-matched population. One potential aetiological hypothesis is that an environmental trigger, such as the gut microbiome, interacts with a genetically predisposed individual. To investigate this, we studied 47 patients with leucine-rich glioma-inactivated 1 (LGI1)- or contactin-associated protein 2 (CAPSR2)-antibody encephalitis (LGI1/CASPR2-Ab-E) and 37 familial/environmentally matched controls, and performed metagenomic shotgun sequencing, to describe compositional and functional differences in the gut microbiome. We observed that LGI1/CASPR2-Ab-E gut microbiomes exhibited a significant reduction in the ratio ofFirmicutesandBacteroidetesphyla, which associated with dosage of HLA susceptibility alleles in LGI1-Ab-E patients. Furthermore, we identified differences in functional gene profiles in the gut microbiome that led to a reduction of neuroinflammatory protective short-chain-fatty-acids (SCFA) in LGI1-Ab-E patients. Taken together, our results suggest that a compositional shift in the gut microbiome of LGI1/CASPR2-Ab-E associates with a neuroinflammatory state, possibly through the reduction of SCFA production. Our study highlights the potential of the gut microbiome to explain some of the complex condition and unravel aetiological questions. Validation studies with greater sample sizes are recommended.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3