Abstract
AbstractSeveral plant-associated microbes synthesize the auxinic plant growth regulator phenylacetic acid (PAA) in culture; however, the role of PAA in plant-pathogen interactions is not well understood. In this study, we investigate the role of PAA during interactions between the phytopathogenic bacteriumPseudomonas syringaestrainPtoDC3000 (PtoDC3000) and the model plant host,Arabidopsis thaliana. Previous work demonstrated that indole-3-acetaldehyde dehydrogenase A (AldA) ofPtoDC3000 converts indole-3-acetaldehyde (IAAld) to the auxin indole-3-acetic acid (IAA). Here, we further demonstrate the biochemical versatility of AldA, as it can use both IAAld and phenylacetaldehyde as substrates to produce IAA and PAA, respectively. We also show that during infection AldA-dependent synthesis of either IAA or PAA byPtoDC3000 does not contribute significantly to the increase in auxin levels inA. thalianaleaves. Using availablearogenate dehydratase(adt) mutant lines ofA. thalianacompromised for PAA synthesis, we observed that a reduction in PAA-Asp and PAA-Glu is correlated with elevated levels of IAA and increased susceptibility. These results provide evidence that PAA/IAA homeostasis inA. thalianainfluences the outcome of plant-microbial interactions.
Publisher
Cold Spring Harbor Laboratory