A generalized framework to identify SARS-CoV-2 broadly neutralizing antibodies

Author:

Jian Fanchong,Wec Anna Z.,Feng Leilei,Yu Yuanling,Wang Lei,Wang Peng,Yu Lingling,Wang Jing,Hou Jacob,Berrueta Daniela Montes,Lee Diana,Speidel Tessa,Ma LingZhi,Kim Thu,Yisimayi Ayijiang,Song Weiliang,Wang Jing,Liu Lu,Yang Sijie,Niu Xiao,Xiao Tianhe,An Ran,Wang Yao,Shao Fei,Wang Youchun,Henry Carole,Pecetta Simone,Wang Xiangxi,Walker Laura M.,Cao Yunlong

Abstract

AbstractMonoclonal antibodies (mAbs) targeting the SARS-CoV-2 receptor-binding domain (RBD) showed high efficacy in the prevention and treatment of COVID-19. However, the rapid evolution of SARS-CoV-2 has rendered all clinically authorized mAbs ineffective and continues to stymie the development of next-generation mAbs. Consequently, the ability to identify broadly neutralizing antibodies (bnAbs) that neutralize both current and future variants is critical for successful antibody therapeutic development, especially for newly emerged viruses when no knowledge about immune evasive variants is available. Here, we have developed a strategy to specifically select for potent bnAbs with activity against both existing and prospective SARS-CoV-2 variants based on accurate viral evolution prediction informed by deep mutational scanning (DMS). By adopting this methodology, we increased the probability of identifying XBB.1.5-effective SARS-CoV-2 bnAbs from ∼1% to 40% if we were at the early stage of the pandemic, as revealed by a retrospective analysis of >1,000 SARS-CoV-2 wildtype (WT)-elicited mAbs. From this collection, we identified a bnAb, designated BD55-1205, that exhibited exceptional activity against historical, contemporary, and predicted future variants. Structural analyses revealed extensive polar interactions between BD55-1205 and XBB.1.5 receptor-binding motif (RBM), especially with backbone atoms, explaining its unusually broad reactivity. Importantly, mRNA-based delivery of BD55-1205 IgG to human FcRn-expressing transgenic mice resulted in high serum neutralizing titers against selected XBB and BA.2.86 subvariants. Together, the ability to identify bnAbs via accurate viral evolution prediction, coupled with the speed and flexibility of mRNA delivery technology, provides a generalized framework for the rapid development of next-generation antibody-based countermeasures against SARS-CoV-2 and potentially other highly variable pathogens with pandemic potential.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3