Hypothesis-driven interpretable neural network for interactions between genes

Author:

Wang Shuhui,Allauzen Alexandre,Nghe Philippe,Opuu Vaitea

Abstract

AbstractMechanistic models of genetic interactions are rarely feasible due to a lack of information and computational challenges. Alternatively, machine learning (ML) approaches may predict gene interactions if provided with enough data but they lack interpretability. Here, we propose an ML approach for interpretable genotype-fitness mapping, the Direct-Latent Interpretable Model (D-LIM). The neural network is built on a strong hypothesis: mutations in different genes cause independent effects in phenotypes, which then interact via non-linear relationships to determine fitness. D-LIM predicts genotype-fitness maps for combinations of mutations in multiple genes with state-of-the-art accuracy, showing the validity of the hypothesis in the case of a deep mutational scanning in a metabolic pathway. The hypothesisdriven structure of D-LIM offers interpretable features reminiscent of mechanistic models: the inference of phenotypes, fitness extrapolation outside of the data domain, and enhanced prediction in low-data regimes by the integration of prior knowledge.

Publisher

Cold Spring Harbor Laboratory

Reference16 articles.

1. Mapping the fitness landscape of gene expression uncovers the cause of antagonism and sign epistasis between adaptive mutations;PLoS genetics,2014

2. Faure, A. J. , and Lehner, B. Mochi: neural networks to fit interpretable models and quantify energies, energetic couplings, epistasis and allostery from deep mutational scanning data. bioRxiv (2024), 2024–01.

3. Array programming with numpy;Nature,2020

4. Multilayer feedforward networks are universal approximators;Neural networks,1989

5. Flux, toxicity, and expression costs generate complex genetic interactions in a metabolic pathway;Science Advances,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3