Arabidopsis iron superoxide dismutase 1 protects against methyl viologen-induced oxidative stress in a copper-dependent manner

Author:

Melicher PavolORCID,Dvořák PetrORCID,Krasylenko YuliyaORCID,Shapiguzov AlexeyORCID,Kangasjärvi JaakkoORCID,Šamaj JozefORCID,Takáč TomášORCID

Abstract

AbstractIron superoxide dismutase 1 (FSD1) was recently characterized as a plastidial, cytoplasmic, and nuclear superoxide dismutase with osmoprotective and antioxidative functions. However, its role in oxidative stress tolerance is not well understood. Here, we characterized the role of FSD1 in response to methyl viologen (MV)-induced oxidative stress in Arabidopsis thaliana. The findings demonstrated that the antioxidative function of FSD1 depends on the availability of Cu2+ in growth media. Prolonged MV exposure led to a decreased accumulation rate of superoxide, higher levels of hydrogen peroxide production, and higher protein carbonylation in the fsd1 mutants and transgenic plants lacking a plastidial pool of FSD1, compared to the wild type. MV led to a rapid increase in FSD1 activity, followed by a decrease. Chloroplastic localization of FSD1 is necessary for these changes. Proteomic analysis showed that the sensitivity of the fsd1 mutants coincided with decreased abundance of ferredoxin and light PSII harvesting complex proteins, with altered levels of signaling proteins. Collectively, the study provides evidence for the conditional antioxidative function of FSD1 and its possible role in signaling.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3