Blood flow modeling reveals improved collateral artery performance during mammalian heart regeneration

Author:

Anbazhakan Suhaas,Rios Coronado Pamela E.,Sy-Quia Ana Natalia L.,Seow Anson,Hands Aubrey M.,Zhao Mingming,Dong Melody L.,Pfaller Martin,Raftrey Brian C.,Cook Christopher K.,Bernstein Daniel,Nieman Koen,Pașca Anca M.,Marsden Alison L.,Red-Horse Kristy

Abstract

AbstractCollateral arteries are a vessel subtype that bridges two artery branches, forming a natural bypass that can deliver blood flow downstream of an occlusion. These bridges in the human heart are associated with better outcomes during coronary artery disease. We recently found that their rapid development in neonates supports heart regeneration, while the non-regenerative adult heart displays slow and minimal collateralization. Thus, inducing robust collateral artery networks could serve as viable treatment for cardiac ischemia, but reaching this goal requires more knowledge on their developmental mechanisms and functional capabilities. Here, we use whole-organ imaging and 3D computational fluid dynamics (CFD) modeling to identify the spatial architecture of and predict blood flow through collaterals in neonate and adult hearts. We found that neonate collaterals are more numerous, larger in diameter, and, even when similar in size/number, are predicted to more effectively re-perfuse an occluded coronary network when compared to adults. CFD analysis revealed that collaterals perform better in neonates because of decreased differential pressures along their coronary artery tree. Furthermore, testing of various collateral configurations indicated that larger, more proximal collaterals are more beneficial than many smaller ones, identifying a target architecture for therapeutic interventions. Morphometric analysis revealed how the coronary artery network expands during postnatal growth. Vessel diameters do not scale with cardiac muscle growth. Instead, the coronary tree expands solely by adding additional branches of a set length, a burst of which occurs during murine puberty. Finally, we compared mouse structural and functional data to human hearts. Surprisingly, fetal human hearts possessed a very large number of small, but mature, smooth muscle cell covered collaterals while angiogram data indicated adult patients with chronic coronary occlusions contained at least two. Comparing size ratios with modeled mouse data suggested low re-perfusion capabilities of the embryonic collaterals but higher functional benefits of those in diseased adults. Our unique interdisciplinary approach allowed us to quantify the functional significance of collateral arteries during heart regeneration and repair–a critical step towards realizing their therapeutic potential.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3