SVAT: Secure Outsourcing of Variant Annotation and Genotype Aggregation

Author:

Kim Miran,Wang Su,Jiang Xiaoqian,Harmanci Arif

Abstract

AbstractBackgroundSequencing of thousands of samples provides genetic variants with allele frequencies spanning a very large spectrum and gives invaluable insight for genetic determinants of diseases. Protecting the genetic privacy of participants is challenging as only a few rare variants can easily re-identify an individual among millions. In certain cases, there are policy barriers against sharing genetic data from indigenous populations and stigmatizing conditions.ResultsWe present SVAT, a method for secure outsourcing of variant annotation and aggregation, which are two basic steps in variant interpretation and detection of causal variants. SVAT uses homomorphic encryption to encrypt the data at the client-side. The data always stays encrypted while it is stored, in-transit, and most importantly while it is analyzed. SVAT makes use of a vectorized data representation to convert annotation and aggregation into efficient vectorized operations in a single framework. Also, SVAT utilizes a secure re-encryption approach so that multiple disparate genotype datasets can be combined for federated aggregation and secure computation of allele frequencies on the aggregated dataset.ConclusionsOverall, SVAT provides a secure, flexible, and practical framework for privacy-aware outsourcing of annotation, filtering, and aggregation of genetic variants. SVAT is publicly available for download from https://github.com/harmancilab/SVAT

Publisher

Cold Spring Harbor Laboratory

Reference71 articles.

1. Integrating common and rare genetic variation in diverse human populations

2. A global reference for human genetic variation

3. Caulfield M , Davies J , Dennys M , Elbahy L , Fowler T , Hill S , et al. The 100,000 Genomes Project Protocol. Genomics Engl. 2015; February.

4. Collins FS . The Cancer Genome Atlas (TCGA). Online. 2007;:1–17.

5. NHLBI. NHLBI Trans-Omics for Precision Medicine Whole Genome Sequencing Program. TOPMed. https://www.nhlbiwgs.org/. 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3