Global Epigenetic Analysis Reveals H3K27 Methylation as a Mediator of Double Strand Break Repair

Author:

Lutze Julian,Wolfgeher Donald,Kron Stephen J.

Abstract

AbstractThe majority of cancer patients is treated with ionizing radiation (IR), a relatively safe and effective treatment considered to target tumors by inducing DNA double strand breaks (DSBs). Despite clinical interest in increasing the efficacy of IR by preventing successful DSB repair, few effective radio-adjuvant therapies exist. Extensive literature suggests that chromatin modifiers play a role in the DSB repair and thus may represent a novel class of radiosensitizers. Indeed, chromatin has both local and global impacts on DSB formation, recognition of breaks, checkpoint signaling, recruitment of repair factors, and timely DSB resolution, suggesting that epigenetic deregulation in cancer may impact the efficacy of radiotherapy. Here, using tandem mass spectrometry proteomics to analyze global patterns of histone modification in MCF7 breast cancer cells following IR exposure, we find significant and long-lasting changes to the epigenome. Our results confirm that H3K27 trimethylation (H3K27me3), best known for mediating gene repression and regulating cell fate, increases after IR. H3K27me3 changes rapidly, accumulating at sites of DNA damage. Inhibitors of the Polycomb related complex subunit and H3K27 methyltransferase EZH2 confirm that H3K27me3 is necessary for DNA damage recognition and cell survival after IR. These studies provide an argument for evaluating EZH2 as a radiosensitization target and H3K27me3 as a marker for radiation response in cancer. Proteomic data are available via ProteomeXchange with identifier PXD019388.

Publisher

Cold Spring Harbor Laboratory

Reference102 articles.

1. State-of-the-art strategies for targeting the DNA damage response in cancer;Nature Reviews Clinical Oncology,2018

2. Biological Consequences of Radiation-induced DNA Damage: Relevance to Radiotherapy

3. Current concepts in clinical radiation oncology;Radiation and Environmental Biophysics,2014

4. The role of Imaging and Radiation Oncology Core for precision medicine era of clinical trial;Translational Lung Cancer Research,2017

5. Rationale for concurrent chemoradiotherapy for patients with stage III non-small-cell lung cancer;British Journal of Cancer,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3