Abstract
AbstractProgressive fibrogenesis in chronic liver injury is often associated with cancer development. Beta-arrestin-2 (ARRB2) is a regulator of the profibrotic Angiotensin II type 1 receptor (AGTR1). The role of ARRB2 in liver fibrosis and in the transition from fibrosis to cancer is not fully understood and was investigated in this study.This study demonstrates that upregulation of the retinoic acid receptor responder 1 (RARRES1) in HSC mediated by ARRB2 leads to fibrosis. This process is driven by exosomal ARRB2 transfer to HSC, major fibrosis contributors, from injured hepatocytes, which highly express ARRB2. By contrast, downregulation of RARRES1 in hepatocytes induces malignant transformation and hepatocellular carcinoma (HCC) development. Consequently, Arrb2-deficient mice show higher number and size of liver tumors than wild-type mice in a hepatocellular carcinoma model with fibrosis. The identified relationship between ARRB2 and RARRES1 was observed in at least two species, including human cells and tissues in fibrosis and HCC and has a predictive value for survival in cancer patients. This study describes the discovery of a novel molecular pathway mediating the transition from fibrosis to cancer offering potential diagnostics and therapeutics.
Publisher
Cold Spring Harbor Laboratory