Author:
Blandino-Rosano Manuel,Llacer Pau Romaguera,Lin Ashley,Reddy Janardan K,Bernal-Mizrachi Ernesto
Abstract
ABSTRACTType 2 diabetes (T2D) is a metabolic disorder associated with abnormal glucose homeostasis and is characterized by intrinsic defects in β-cell function and mass. Trimethylguanosine synthase 1 (TGS1) is an evolutionarily conserved enzyme that methylates small nuclear and nucleolar RNAs (snRNAs and snoRNAs) and is involved in pre-mRNA splicing, transcription, and ribosome production. However, the role of TGS1 in β-cells and glucose homeostasis had not been explored. Here we show that TGS1 is upregulated by insulin and upregulated in islets from mice exposed to a high-fat diet and in human β-cells from T2D donors. Using mice with conditional (βTGS1KO and βTGS1Het) and inducible (MIP-CreERT-TGS1KO) TGS1 deletion, we determine that TGS1 regulates β-cell mass and function. Unbiased approaches allowed us to identify a link between TGS1 and ER stress and cell cycle arrest and how TGS1 regulates β-cell apoptosis. Deletion of TGS1 results in an increase in the unfolded protein response by increasing XBP-1, ATF-4, and the phosphorylation of eIF2α, and several changes in cell cycle inhibitors and activators such as p27 and Cyclin D2. This study establishes TGS1 as a key player regulating β-cell mass and function as well as playing a role in the adaptive β-cell function to a high-fat diet. These observations can be used as a stepping-stone for the design of novel strategies using TGS1 as a therapeutic target for the treatment of diabetes.
Publisher
Cold Spring Harbor Laboratory
Reference36 articles.
1. Molecular mechanisms of insulin resistance
2. Molecular mechanism of insulin resistance
3. Insulin and insulin resistance;Clin Biochem Rev,2005
4. Economic Costs of Diabetes in the U.S. in 2012
5. Prevention, C. f. D. C. a. About Underlying Cause of Death 1999–2015. CDC WONDER Database.