A Methodology for Vertical Translation Between Molecular and Organismal Level in Biological Feedback Loops

Author:

Dietrich J. W.ORCID

Abstract

ABSTRACTFeedback loops are among the primary network motifs in living organisms, ensuring survival via homeostatic control of key metabolites and physical properties. However, from a scientific perspective, their characterization is unsatisfactory since the usual modelling methodology is incompatible with the physiological and biochemical basis of metabolic networks. Therefore, any “vertical translation”, i.e. the study of the correspondence between molecular and organismal levels of causality, is difficult and in most cases impossible.As a viable solution, we demonstrate an alternative modelling platform for biological feedback loops that is based on key biochemical principles, including mass action law, enzyme kinetics, binding of mediators to transporters and receptors, and basic pharmacological properties. Subsequently, we show how this framework can be used for translating from molecular to systems-level behaviour.Basic elements of the proposed modelling platform include Michaelis-Menten kinetics defining nonlinear dependence of the output y(t) on an input signal x(t) with the Hill-Langmuir equation y(t) = G * x(t)n / (D + x(t)n), non-competitive inhibition for linking stimulatory and inhibitory inputs with y(t) = G + x1(t) / ((D + x1(t) * (1 + x2(t) / KI)) and processing structures for distribution and elimination.Depending on the structure of the feedback loop, its equifinal (steady-state) behaviour can be solved in form of polynomials, with a quadratic equation for the simplest case with one feedback loop and a Hill exponent of 1, and higher-grade polynomials for additional feedback loops and/or integer Hill exponents > 1. As a companion to the analytical solution, a flexible class library (CyberUnits) facilitates computer simulations for studying the transitional behaviour of the feedback loop.Unlike other modelling strategies in biocybernetics and systems biology, this platform allows for straightforward translation from the statistical properties of single molecules on a “microscopic” level to the behaviour of the whole feedback loop on an organismal “macroscopic” level. An example is the Michaelis constant D, which is equivalent to (k–1 + k2) / k1, where k1, k–1 and k2 denote the rate constants for the association and dissociation of the enzyme-substrate or receptor-hormone complex, respectively. From the perspective of a single molecule the rate constants represent the probability (per unit time) that the corresponding reaction will happen in the subsequent time interval. Therefore 1/k represents the mean lifetime of the complex. Very similar considerations apply to the other described constants of the feedback loop.In summary, this modelling technique renders the translation from a molecular level to a systems perspective possible. In addition to providing new insights into the physiology of biological feedback loops, it may be a valuable tool for multiple disciplines of biomedical research, including drug design, molecular genetics and investigations on the effects of endocrine disruptors.

Publisher

Cold Spring Harbor Laboratory

Reference13 articles.

1. Biological Relativity Requires Circular Causality but Not Symmetry of Causation: So, Where, What and When Are the Boundaries?;Front Physiol,2019

2. The Quest for System-Theoretical Medicine in the COVID-19 Era;Front Med (Lausanne),2021

3. Dietrich JW , Boehm BO : Die MiMe-NoCoDI-Plattform: Ein Ansatz für die Modellierung biologischer Regelkreise. GMS - German Medical Science 2015(60. Jahrestagung der GMDS e.V.):DocAbstr. 284.

4. Mathematical Modeling of the Pituitary-Thyroid Feedback Loop: Role of a TSH-T3-Shunt and Sensitivity Analysis;Front Endocrinol (Lausanne),2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3