Small molecule screen employing patient-derived iPS hepatocytes identifies LRRK2 as a novel therapeutic target for Alpha1 Antitrypsin Deficiency

Author:

Kent Deniz,Ng Soon Seng,Khoshkenar Payam,Syanda Adam M.,Li Chao Zheng,Zieger Marina,Greer Cindy,Hatch Stephanie,Segal Joe,Blackford Samuel J.I.,Chowdary Vivek,Ismali Taylor,Danovi Davide,Sahdeo Sunil,Ebner DanielORCID,Mueller Christian,Rashid S. Tamir

Abstract

AbstractAlpha-1 antitrypsin deficiency is a life-threatening condition caused by inheritance of the SERPINA1 gene ‘Z’ variant. This single base pair mutation leads to protein misfolding, ER entrapment and gain of toxic function. Despite the significant unmet medical need presented by this disorder, there remain no approved medicines and the only curative option is liver transplantation. We hypothesized that an unbiased screen of human hepatocytes harbouring the Z mutation (ATZ) using small molecules targeted against protein degradation pathways would uncover novel biological insights of therapeutic relevance. Here we report the results of that screen performed in a patient-derived iPSC model of ATZ. Starting from 1,041 compounds we identified 14 targets capable of reducing polymer burden, including Leucine-rich repeat kinase-2 (LRRK2), a well-studied target in Parkinson’s. Genetic deletion of LRRK2 in ATZ mice reduced polymers and associated fibrotic liver disease leading us to test a library of commercially available LRRK2 kinase inhibitors in both patient iPSC and CHO cell models. One of the molecules tested, CZC-25146, reduced polymer load, increased normal AAT secretion and reduced inflammatory cytokines with pharmacokinetic properties supporting its potential use for treating liver diseases. We therefore tested CZC-25146 in the ATZ mouse model and confirmed its efficacy for polymer reduction without signs of toxicity. Mechanistically, in both human and mouse models, our data show CZC-25146 inhibits LRRK2 kinase activity and induces autophagy. Cumulatively, these findings support the use of CZC-25146 and LRRK2 inhibitors in general in hepatic proteopathy disease research and as potential new treatment approaches for patients.One Sentence SummaryA small molecule screen in patient iPSCs with in vivo validation in mice identifies LRRK2 as a new therapeutic target for Alpha-1 Antitrypsin Deficiency.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3