Global mapping of the energetic and allosteric landscapes of protein binding domains

Author:

Faure Andre J.ORCID,Domingo JúliaORCID,Schmiedel Jörn M.ORCID,Hidalgo-Carcedo CristinaORCID,Diss GuillaumeORCID,Lehner BenORCID

Abstract

AbstractAllosteric communication between distant sites in proteins is central to nearly all biological regulation but still poorly characterised for most proteins, limiting conceptual understanding, biological engineering and allosteric drug development. Typically only a few allosteric sites are known in model proteins, but theoretical, evolutionary and some experimental studies suggest they may be much more widely distributed. An important reason why allostery remains poorly characterised is the lack of methods to systematically quantify long-range communication in diverse proteins. Here we address this shortcoming by developing a method that uses deep mutational scanning to comprehensively map the allosteric landscapes of protein interaction domains. The key concept of the approach is the use of ‘multidimensional mutagenesis’: mutational effects are quantified for multiple molecular phenotypes—here binding and protein abundance—and in multiple genetic backgrounds. This is an efficient experimental design that allows the underlying causal biophysical effects of mutations to be accurately inferred en masse by fitting thermodynamic models using neural networks. We apply the approach to two of the most common human protein interaction domains, an SH3 domain and a PDZ domain, to produce the first global atlases of allosteric mutations for any proteins. Allosteric mutations are widely dispersed with extensive long-range tuning of binding affinity and a large mutational target space of network-altering ‘edgetic’ variants. Mutations are more likely to be allosteric closer to binding interfaces, at Glycines in secondary structure elements and at particular sites including a chain of residues connecting to an opposite surface in the PDZ domain. This general approach of quantifying mutational effects for multiple molecular phenotypes and in multiple genetic backgrounds should allow the energetic and allosteric landscapes of many proteins to be rapidly and comprehensively mapped.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3