Ascorbate concentration in Arabidopsis thaliana and expression of ascorbate related genes using RNAseq in response to light and the diurnal cycle

Author:

Laing WilliamORCID,Norling Cara,Brewster Di,Wright Michele,Bulley SeanORCID

Abstract

AbstractWe explore where transcriptional regulation of ascorbate concentration lies in plants. Is it in biosynthesis,recycling, regulation or consumption? Arabidopsis thaliana plants were grown under controlled environment at four photon flux density levels (PFD). Rosettes from plants were harvested at the four PFD levels and over a diurnal cycle and after a step change in PFD and analysed for ascorbate concentration and transcript levels measured by RNAseq. Ascorbate concentrations and expression of genes in the L-galactose ascorbate biosynthesis, recycling,consumption pathways and regulation are presented to provide a full analysis of the control of ascorbate by environmentally modulated gene expression. Ascorbate concentration responded to PFD levels but not to time of day and showed only a small response to change of PFD after 2 days. Of the L-galactose pathway genes, only GDP galactose phosphorylase (GGP) showed a significant response in to different PFDs, time of day and to change in PFD. Other genes also showed limited responses. This study compares gene expression of a range of ascorbate related genes to changes in environment in a unified way and supports the concept that GGP is the key regulatory gene in ascorbate biosynthesis and that post transcriptional regulation is also important.HighlightIn a comprehensive study of expression of all ascorbate related genes the data is consistent with the control of leaf ascorbate concentration by transcription being through the expression of GDP galactose phosphorylase.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3