Author:
Srivastava Surabhi,Avvaru Akshay Kumar,Sowpati Divya Tej,Mishra Rakesh K
Abstract
AbstractMicrosatellites, also known as Simple Sequence Repeats (SSRs), are evolutionarily conserved repeat elements distributed non-randomly in all genomes. Many studies have investigated their pattern of occurrence in order to understand their role, but their identification has largely been non-exhaustive and limited to a few related species or model organisms. Here, we identify ~685 million microsatellites from 719 eukaryotes and analyze their evolutionary trends from protists to mammals. We document novel patterns uniquely demarcating closely related species, including in pathogens like Leishmania as well as in higher organisms such as Drosophila, birds, primates, and cereal crops. The distribution of SSRs in coding and non-coding regions reveals taxon-specific variations in their exonic, intronic and intergenic densities. We also show that specific SSRs accumulate at longer lengths in higher organisms indicating an evolutionary selection pressure. In general, we observe greater constraints in the SSR composition of multicellular organisms with complex cell types, while simpler organisms show more diversity. The conserved microsatellite trends and species-specific signatures identified in this study closely mirror phylogenetic relationships and we hypothesize that SSRs are integral components in speciation and the evolution of organismal complexity. The microsatellite dataset generated in this work provides a large number of candidates for functional analysis and unparalleled scope for understanding their roles across the evolutionary landscape.
Publisher
Cold Spring Harbor Laboratory