GrgA as a potential target of selective antichlamydials

Author:

Zhang Huirong,Vellappan Sangeevan,Tang M. Matt,Bao Xiaofeng,Fan Huizhou

Abstract

ABSTRACTChlamydiais a common pathogen that can causes serious complications in the reproductive system and eyes. Lack of vaccine and other effective prophylactic measures coupled with the largely asymptomatic nature and unrare clinical treatment failure calls for development of new antichlamydials, particularly selective antichlamydials without adverse effects on humans and the beneficial microbiota. We previously reported that benzal-N-acylhydrazones (BAH) can inhibit chlamydiae without detectable adverse effects on host cells and beneficial lactobacilli that dominate the human vaginal microbiota among reproductive-age women. However, the antichlamydial mechanism of BAH is not known. Whereas 4 single nucleotide polymorphisms (i.e., SNP1-4) were identified in a rareChlamydiavariant with a low level of BAH resistance, termed MCR, previous studies failed to establish a causal effect of any particular SNP(s). In the present work, we performed recombination to segregate the four SNPs. Susceptibility tests indicate that the R51G GrgA allele is both necessary and sufficient for the low level of BAH resistance. Thus, theChlamydia-specific transcription factor GrgA either is a direct target of BAH or regulates BAH susceptibility. We further confirm an extremely low rate of BAH resistance inChlamydia. Our findings warrant exploration of GrgA as a therapeutic and prophylactic target for chlamydial infections.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3