A systems view of haloarchaeal strategies to withstand stress from transition metals

Author:

Kaur Amardeep,Pan Min,Meislin Megan,Facciotti Marc T.,El-Gewely Raafat,Baliga Nitin S.

Abstract

Given that transition metals are essential cofactors in central biological processes, misallocation of the wrong metal ion to a metalloprotein can have resounding and often detrimental effects on diverse aspects of cellular physiology. Therefore, in an attempt to characterize unique and shared responses to chemically similar metals, we have reconstructed physiological behaviors of Halobacterium NRC-1, an archaeal halophile, in sublethal levels of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II). Over 20% of all genes responded transiently within minutes of exposure to Fe(II), perhaps reflecting immediate large-scale physiological adjustments to maintain homeostasis. At steady state, each transition metal induced growth arrest, attempts to minimize oxidative stress, toxic ion scavenging, increased protein turnover and DNA repair, and modulation of active ion transport. While several of these constitute generalized stress responses, up-regulation of active efflux of Co(II), Ni(II), Cu(II), and Zn(II), down-regulation of Mn(II) uptake and up-regulation of Fe(II) chelation, confer resistance to the respective metals. We have synthesized all of these discoveries into a unified systems-level model to provide an integrated perspective of responses to six transition metals with emphasis on experimentally verified regulatory mechanisms. Finally, through comparisons across global transcriptional responses to different metals, we provide insights into putative in vivo metal selectivity of metalloregulatory proteins and demonstrate that a systems approach can help rapidly unravel novel metabolic potential and regulatory programs of poorly studied organisms.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3