Chance favors the prepared genomes: horizontal transfer shapes the emergence of antibiotic resistance mutations in core genes

Author:

Coluzzi CharlesORCID,Guillemet Martin,Mazzamurro Fanny,Touchon Marie,Godfroid Maxime,Achaz Guillaume,Glaser PhilippeORCID,Rocha Eduardo PC

Abstract

AbstractBacterial lineages vary in the frequency with which they acquire novel traits, like antibiotic resistance or virulence. While previous studies have highlighted the impact of the genetic background on the successful acquisition of novel traits through horizontal gene transfer, the impact of the latter on the subsequent evolution of bacterial genomes by point mutations remains poorly understood. Here, we studied the evolution of resistance to quinolones in thousands ofEscherichia coligenomes. Resistance-conferring point mutations in the core genes are frequent and accumulate very quickly. We searched for gene gains and losses significantly associated with the subsequent acquisition of these resistance mutations. This revealed 60 groups of genes in genetic linkage whose gain or loss induced a change in the probability of subsequently becoming resistant to quinolones by point mutations ingyrAandparC. Although some of these chronologies may reflect epidemiological trends, most of these groups encoded functions that were previously associated with antibiotic resistance, tolerance, or persistence, often specifically under quinolone treatment. A lot of the largest groups were found in prophages or plasmids, and they usually increased the likelihood of subsequent resistance mutations. Conversely groups of lost genes were typically small and chromosomal. Quinolone resistance was among the first resistances acquired in the extant lineages ofE. coliand its acquisition was associated with an increased likelihood of acquiring other types of resistances, including to aminoglycosides and beta-lactams. Our findings suggest that gene flow shapes the subsequent fixation rate of adaptive mutations in core genes. Given the substantial gene flow within bacterial genomes, interactions between horizontal transfer and point mutations in core genes may be key to the success of adaptation processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3