Loss of Lamin A leads to the nuclear translocation of AGO2 and compromised RNA interference

Author:

Lobo Vivian,Nowak Iwona,Fernandez Carola,Correa Muler Ana Iris,Westholm Jakub O.,Huang Hsiang-Chi,Fabrik Ivo,Huynh Hang Thuy,Kanik Melis,Härtlova Anetta,Benhalevy Daniel,Angeletti DavideORCID,Sarshad Aishe A.

Abstract

ABSTRACTIn mammals, RNA interference (RNAi) is mostly studied as a cytoplasmic event, however, numerous reports convincingly show nuclear localization of the AGO proteins. Nevertheless, the mechanism of nuclear entry remains to be fully elucidated, and the extent of nuclear RNAi further explored. We found that reduced Lamin A levels significantly induced nuclear influx of AGO2 in SHSY5Y neuroblastoma and A375 melanoma cancer cell lines, which normally have no nuclear AGO2. The translocation of AGO2 was accompanied by aggravated cell proliferation and we further found that the loss of Lamin A leads to EGFR and Src kinase activation, which regulates the turnover and stability of cytoplasmic AGO2. Furthermore, Lamin A KO significantly reduced the activity of nuclear RNAi. This was evident by AGO fPAR-CLIP in WT and Lamin A KO cells, where we observed ca 60% less efficiency of RNAi. Mass spectrometry of AGO interactome, from the nuclear fraction, indicated that AGO2 is in complex with FAM120A, a known interactor of AGO2 that reduces the activity of RNAi by competing with AGO2 transcript binding. Therefore, loss of Lamin A starts a signaling cascade that mediates nuclear AGO2 translocation to rapidly inhibit RNAi in order to facilitate cancer proliferation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3