Investigating Alternative Models of Acute HIV Infection

Author:

Mainou EllieORCID,Ribeiro RuyORCID,Conway Jessica M

Abstract

AbstractUnderstanding the dynamics to acute HIV infection may provide insights into the mechanisms of early viral control with potential implications for vaccine design. The standard viral dynamics model explains HIV viral dynamics during acute infection reasonably well. However, the model makes simplifying assumptions, neglecting some aspects of HIV. For example, in the standard model, target cells are infected by a single HIV virion. Yet, cellular multiplicity of infection (MOI) may have considerable effects in pathogenesis and viral evolution. Further, when using the standard model, we take constant infected cell death rates, simplifying the dynamic immune responses. Here, we use four models—1) the standard viral dynamics model, 2) an alternate model incorporating cellular MOI, 3) a model assuming density-dependent death rate of infected cells and 4) a model combining (2) and (3)—to investigate acute infection dynamics in 43 people tested very early after HIV exposure. We find that all models explain the data, but different models describe differing features of the dynamics more accurately. For example, while the standard viral dynamics model may be the most parsimonious model, viral peaks are better explained by a model allowing for cellular MOI. These results suggest that heterogeneity in within-host viral dynamics cannot be captured by a single model. Thus depending on the aspect of interest, a corresponding model should be employed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3