baRcodeR with PyTrackDat: Open-source labelling and tracking of biological samples for repeatable science

Author:

Wu Yihan,Lougheed David R.,Lougheed Stephen C.,Moniz Kristy,Walker Virginia K.,Colautti Robert I.ORCID

Abstract

AbstractRepeatable experiments with accurate data collection and reproducible analyses are fundamental to the scientific method but may be difficult to achieve in practice. Several flexible, open-source tools developed for the R and Python coding environments aid the reproducibility of data wrangling and analysis in scientific research. In contrast, analogous tools are generally lacking for earlier stages, such as systematic labelling and processing of field samples with hierarchical structure (e.g. time points of individuals from multiple lines or populations) or curating heterogenous data collected by different researchers over several years. Such tools are critical for modern research given trends toward globally distributed collaborators using higher-throughput technologies. As a step toward improving repeatability of methods for the collection of biological samples, and curation of biological data, we introduce the R package baRcodeR and the PyTrackDat pipeline in Python. The baRcodeR package provides tools for generating biologically informative, hierarchical labels with digitally encoded 2D barcodes that can be printed and scanned using low-cost commercial hardware. The PyTrackDat pipeline integrates with baRcodeR output to build a web interface for sample management and tracking along with data collection and curation. We briefly describe the application of principles from baRcodeR and PyTrackDat in three large research projects, which demonstrate their value to (i) help document sampling methods, (ii) facilitate collaboration and (iii) reduce opportunities for human errors and omissions that could otherwise propagate through downstream data analysis to compromise biological inference.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3