A mechanism coordinating root elongation, endodermal differentiation, redox homeostasis and response

Author:

Fu Jing,Liu Jiaming,Gao Xudong,Zhang Xinglin,Bai Juan,Hao YuelingORCID,Cui HongchangORCID

Abstract

AbstractRoot growth relies on both cell division and elongation, which occur in the meristem and elongation zones respectively. SCARECROW (SCR) is a GRAS family gene essential for root growth and radial patterning in the Arabidopsis root. Previous studies showed that SCR promotes root growth by suppressing cytokinin response in the meristem, but there is also evidence that SCR expressed beyond the meristem is required as well for root growth. Here we report that SCR promotes root growth by promoting cell elongation through suppression of oxidative stress response and maintenance of redox homeostasis in the elongation zone. In the scr root, a higher level of hydrogen peroxide was detected, which can be attributed to down-regulation of peroxidase gene 3. When stress response was blocked or redox status was ameliorated by the aba2 or upb1 mutation, the scr mutant produced a significantly longer root with longer cells and a larger and mitotically more active meristem, even though the stem cell and radial patterning defects still persisted. We showed that WRKY15, an oxidative responsive gene, was a direct target of SCR down-regulated in the scr mutant, which suggests that SCR has an active role in suppressing oxidative stress response. Since hydrogen peroxide and peroxidases are essential for endodermal differentiation, these results suggest that SCR plays a central role in coordinating cell elongation, endodermal differentiation, redox homeostasis, and oxidative stress response in plant root.One sentence summaryThis study reveals a novel mechanism of root growth regulation, which involves a previously unrecognized role of SCR in regulating cell elongation, endodermal differentiation, and redox homeostasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3