Genomic, Proteomic and Phenotypic Heterogeneity in HeLa Cells across Laboratories: Implications for Reproducibility of Research Results

Author:

Liu YanshengORCID,Mi Yang,Mueller Torsten,Kreibich Saskia,Williams Evan G.,Van Drogen Audrey,Borel Christelle,Germain Pierre-Luc,Frank Max,Bludau Isabell,Mehnert Martin,Seifert Michael,Emmenlauer Mario,Sorg Isabel,Bezrukov Fedor,Sloan Bena Frederique,Zhou Hu,Dehio Christoph,Testa Giuseppe,Saez-Rodriguez Julio,Antonarakis Stylianos E.,Hardt Wolf-Dietrich,Aebersold Ruedi

Abstract

AbstractThe independent reproduction of research results is a cornerstone of experimental research, yet it is beset by numerous challenges, including the quality and veracity of reagents and materials. Much of life science research depends on life materials, including human tissue culture cells. In this study we aimed at determining the degree of variability in the molecular makeup and the ensuing phenotypic consequences in commonly used human tissue culture cells. We collected 14 stock HeLa aliquots from 13 different laboratories across the globe, cultured them in uniform conditions and profiled the genome-wide copy numbers, mRNAs, proteins and protein turnover rates via genomic techniques and SWATH mass spectrometry, respectively. We also phenotyped each cell line with respect to the ability of transfected Let7 mimics to modulate Salmonella infection.We discovered significant heterogeneity between HeLa variants, especially between lines of the CCL2 and Kyoto variety. We also observed progressive divergence within a specific cell line over 50 successive passages. From the aggregate multi-omic datasets we quantified the response of the cells to genomic variability across the transcriptome and proteome. We discovered organelle-specific proteome remodeling and buffering of protein abundance by protein complex stoichiometry, mediated by the adaptation of protein turnover rates. By associating quantitative proteotype and phenotype measurements we identified protein patterns that explained the varying response of the different cell lines to Salmonella infection.Altogether the results indicate a striking degree of genomic variability, the rapid evolution of genomic variability in culture and its complex translation into distinctive expressed molecular and phenotypic patterns. The results have broad implications for the interpretation and reproducibility of research results obtained from HeLa cells and provide important basis for a general discussion of the value and requirements for communicating research results obtained from human tissue culture cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3