Evolution of abbreviated development in Heliocidaris erythrogramma dramatically re-wired the highly conserved sea urchin developmental gene regulatory network to decouple signaling center function from ultimate fate

Author:

Edgar AllisonORCID,Byrne Maria,McClay David R.,Wray Gregory A.ORCID

Abstract

AbstractDevelopmental gene regulatory networks (GRNs) describe the interactions among gene products that drive the differential transcriptional and cell regulatory states that pattern the embryo and specify distinct cell fates. GRNs are often deeply conserved, but whether this is the product of constraint inherent to the network structure or stabilizing selection remains unclear. We have constructed the first formal GRN for early development in Heliocidaris erythrogramma, a species with dramatically accelerated, direct development. This life history switch has important ecological consequences, arose rapidly, and has evolved independently many times in echinoderms, suggesting it is a product of selection. We find that H. erythrogramma exhibits dramatic differences in GRN topology compared with ancestral, indirect-developing sea urchins. In particular, the GRN sub-circuit that directs the early and autonomous commitment of skeletogenic cell precursors in indirect developers appears to be absent in H. erythrogramma, a particularly striking change in relation to both the prior conservation of this sub-circuit and the key role that these cells play ancestrally in early development as the embryonic signaling center. These results show that even highly conserved molecular mechanisms of early development can be substantially reconfigured in a relatively short evolutionary time span, suggesting that selection rather than constraint is responsible for the striking conservation of the GRN among other sea urchins.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3