Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction

Author:

Vorberg SusannORCID,Seemayer StefanORCID,Söding Johannes

Abstract

Compensatory mutations between protein residues that are in physical contact with each other can manifest themselves as statistical couplings between the corresponding columns in a multiple sequence alignment (MSA) of the protein family. Conversely, high coupling coefficients predict residues contacts. Methods for de-novo protein structure prediction based on this approach are becoming increasingly reliable. Their main limitation is the strong systematic and statistical noise in the estimation of coupling coefficients, which has so far limited their application to very large protein families. While most research has focused on boosting contact prediction quality by adding external information, little progress has been made to improve the statistical procedure at the core. In that regard, our lack of understanding of the sources of noise poses a major obstacle. We have developed CCMgen, the first method for simulating protein evolution by providing full control over the generation of realistic synthetic MSAs with pairwise statistical couplings between residue positions. This procedure requires an exact statistical model that reliably reproduces observed alignment statistics. With CCMpredPy we also provide an implementation of persistent contrastive divergence (PCD), a precise inference technique that enables us to learn the required high-quality statistical models. We demonstrate how CCMgen can facilitate the development and testing of contact prediction methods by analysing the systematic noise contributions from phylogeny and entropy. For that purpose we propose a simple entropy correction (EC) strategy which disentangles the correction for both sources of noise. We find that entropy contributes typically roughly twice as much noise as phylogeny.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3