VOLARE: Visual analysis of disease-associated microbiome-immune system interplay

Author:

Siebert Janet C.,Neff Charles Preston,Schneider Jennifer M.,Regner EmiLie H.,Ohri Neha,Kuhn Kristine A.,Palmer Brent E.,Lozupone Catherine A.,Görg Carsten

Abstract

AbstractBackgroundRelationships between specific microbes and proper immune system development, composition, and function have been reported in a number of studies. However, researchers have discovered only a fraction of the likely relationships. High-dimensional “omic” methodologies such as 16S ribosomal RNA (rRNA) sequencing and Time-of-flight mass cytometry (CyTOF) immunophenotyping generate data that support generation of hypotheses, with the potential to identify additional relationships at a level of granularity ripe for further experimentation. Pairwise linear regressions between microbial and host immune features is one approach for quantifying relationships between “omes”, and the differences in these relationships across study cohorts or arms. This approach yields a top table of candidate results. However, the top table alone lacks the detail that domain experts need to vet candidate results for follow-up experiments.ResultsTo support this vetting, we developed VOLARE (Visualization Of LineAr Regression Elements), a web application that integrates a searchable top table, small in-line graphs illustrating the fitted models, a network summarizing the top table, and on-demand detailed regression plots showing full sample-level detail. We applied VOLARE to three case studies—microbiome:cytokine data from fecal samples in HIV, microbiome:cytokine data in inflammatory bowel disease and spondyloarthritis, and microbiome:immune cell data from gut biopsies in HIV. We present both patient-specific phenomena and relationships that differ by disease state. We also analyzed interaction data from system logs to characterize usage scenarios. This log analysis revealed that, in using VOLARE, domain experts frequently generated detailed regression plots, suggesting that this detail aids the vetting of results.ConclusionsSystematically integrating microbe:immune cell readouts through pairwise linear regressions and presenting the top table in an interactive environment supports the vetting of results for scientific relevance. VOLARE allows domain experts to control the analysis of their results, screening dozens of candidate relationships with ease. This interactive environment transcends the limitations of a static top table.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Colonic Butyrate-Producing Communities in Humans: an Overview Using Omics Data;mSystems,2017

2. Multi-omics Comparative Analysis Reveals Multiple Layers of Host Signaling Pathway Regulation by the Gut Microbiota;mSystems,2017

3. Integration of gene expression and methylation to unravel biological networks in glioblastoma patients;Genetic Epidemiology,2016

4. Large-Scale and Comprehensive Immune Profiling and Functional Analysis of Normal Human Aging;PLOS ONE,2015

5. iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3