Long-COVID post-viral chronic fatigue syndrome and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: a proof of concept and mechanism study

Author:

Al-Hakeim Hussein KadhemORCID,Al-Rubaye Haneen Tahseen,Al-Hadrawi Dhurgham Shihab,Almulla Abbas F.,Maes Michael

Abstract

AbstractThe immune-inflammatory response during the acute phase of COVID-19, as assessed using peak body temperature (PBT) and peripheral oxygen saturation (SpO2), predicts the severity of chronic fatigue, depression and anxiety (“physio-affective”) symptoms three to four months later. The present study was performed to characterize whether the effects of SpO2 and PBT on the physio-affective phenome of Long COVID are mediated by immune, oxidative and nitrosative stress (IO&NS) pathways. This study assayed SpO2 and PBT during acute COVID-19, and C-reactive protein (CRP), malondialdehyde (MDA), protein carbonyls (PCs), myeloperoxidase (MPO), nitric oxide (NO), zinc, and glutathione peroxidase (Gpx) in 120 Long COVID individuals and 36 controls. Cluster analysis showed that 31.7% of the Long COVID patients had severe abnormalities in SpO2, body temperature, increased oxidative toxicity (OSTOX) and lowered antioxidant defenses (ANTIOX), and increased total Hamilton Depression (HAMD) and Anxiety (HAMA) and Fibromylagia-Fatigue (FF) scores. Around 60% of the variance in the physio-affective phenome of Long COVID (a factor extracted from HAMD, HAMA and FF scores) was explained by OSTOX/ANTIOX ratio, PBT and SpO2. Increased PBT predicted increased CRP and lowered ANTIOX and zinc levels, while lowered SpO2 predicted lowered Gpx and increased NO production. Both PBT and SpO2 strongly predict OSTOX/ATIOX during Long COVID. In conclusion, the impact of acute COVID-19 on the physio-affective symptoms of Long COVID is partly mediated by OSTOX/ANTIOX, especially lowered Gpx and zinc, increased MPO and NO production and lipid peroxidation-associated aldehyde formation. Post-viral physio-affective symptoms have an inflammatory origin and are partly mediated by neuro-oxidative toxicity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3