Sequence dependencies and biophysical features both govern cleavage of diverse cut-sites by HIV protease

Author:

Samant Neha,Nachum Gily,Tsepal Tenzin,Bolon Daniel N.A.

Abstract

AbstractThe infectivity of HIV-1 requires its protease cleave multiple cut-sites with low sequence similarity. The diversity of cleavage sites has made it challenging to investigate the underlying sequence properties that determine binding and turnover of substrates by PR. We engineered a mutational scanning approach utilizing yeast display, flow cytometry, and deep sequencing to systematically measure the impacts of all individual amino acid changes at 12 positions in three different cut-sites (MA/CA, NC/p1, and p1/p6). The resulting fitness landscapes revealed common physical features that underlie cutting of all three cut-sites at the amino acid positions closest to the scissile bond. In contrast, positions more than two amino acids away from the scissile bond exhibited a strong dependence on the sequence background of the rest of the cut-site. We observed multiple amino acid changes in cut-sites that led to faster cleavage rates, including a preference for negative charge five and six amino acids away from the scissile bond at locations where the surface of protease is positively charged. Analysis of individual cut sites using full-length matrix-capsid proteins indicate that long-distance sequence context can contribute to cutting efficiency such that analyses of peptides or shorter engineered constructs including those in this work should be considered carefully. This work provides a framework for understanding how diverse substrates interact with HIV-1 protease and can be extended to investigate other viral proteases with similar properties.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3