Polymer physics-based classification of neurons

Author:

Choi Kiri,Kim Won Kyu,Hyeon ChangbongORCID

Abstract

AbstractRecognizing that diverse morphologies of neurons are reminiscent of structures of branched polymers, we put forward a principled and systematic way of classifying neurons that employs the ideas of polymer physics. In particular, we use 3D coordinates of individual neurons, which are accessible in recent neuron reconstruction datasets from electron microscope images. We numerically calculate the form factor, F (q), a Fourier transform of the distance distribution of particles comprising an object of interest, which is routinely measured in scattering experiments to quantitatively characterize the structure of materials. For a polymer-like object consisting of n monomers spanning over a length scale of r, F (q) scales with the wavenumber q(= 2π/r) as F (q) ∼ q−𝒟 at an intermediate range of q, where 𝒟 is the fractal dimension or the inverse scaling exponent (𝒟 = ν−1) characterizing the geometrical feature (rnν) of the object. F (q) can be used to describe a neuron morphology in terms of its size (Rn) and the extent of branching quantified by 𝒟. By defining the distance between F (q)s as a measure of similarity between two neuronal morphologies, we tackle the neuron classification problem. In comparison with other existing classification methods for neuronal morphologies, our F (q)-based classification rests solely on 3D coordinates of neurons with no prior knowledge of morphological features. When applied to publicly available neuron datasets from three different organisms, our method not only complements other methods but also offers a physical picture of how the dendritic and axonal branches of an individual neuron fill the space of dense neural networks inside the brain.

Publisher

Cold Spring Harbor Laboratory

Reference89 articles.

1. E. R. Kandel , J. H. Schwartz , T. M. Jessell , S. A. Seigelbaum , and A. J. Hudspeth , eds., Principles of Neural Science (McGraw Hill, 2013), 5th ed.

2. S. R. y Cajal , Histologie du système nerveux de l’homme & des vertébrés: Cervelet, cerveau moyen, rétine, couche optique, corps strié, écorce cérébrale générale & régionale, grand sympathique, vol. 2 (A. Maloine, 1911).

3. Influence of dendritic structure on firing pattern in model neocortical neurons

4. The effect of dendritic topology on firing patterns in model neurons

5. Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3