Lithium-induced ciliary lengthening sparks Arp2/3 complex-dependent endocytosis

Author:

Bigge Brae MORCID,Avasthi PracheeORCID

Abstract

ABSTRACTCiliary length is highly regulated across cell types, but this tight regulation can be disrupted by lithium, which causes ciliary elongation across cell types and organisms. Here, we use the powerful ciliary model Chlamydomonas reinhardtii to investigate the mechanism behind lithium-induced ciliary elongation. Protein synthesis is not required for lengthening, and the target of lithium is GSK3, which has substrates that can influence membrane dynamics. Further, in addition to elongation of the microtubule core, ciliary assembly requires a supply of ciliary membrane. To test if the membrane for ciliary lengthening could be from the Golgi or the cell body plasma membrane, we treated cells with either Brefeldin A or Dynasore respectively. Cilia were able to elongate normally with Brefeldin treatment, but Dynasore treatment resulted in defective lengthening. Genetic or acute chemical perturbation of the Arp2/3 complex, which is required for endocytosis in these cells, blocks lithium-induces ciliary lengthening. Finally, we looked at filamentous actin in lithium-treated cells and found an increase in Arp2/3 complex-and endocytosis-dependent puncta near the base of cilia. Blocking endocytosis by inhibiting the Arp2/3 complex or dynamin, confirmed by visual loss of endocytic structures, prevents lithium-induced ciliary elongation. We previously reported that endocytosis was required for early ciliary assembly from zero length, and here, we demonstrate that endocytosis is also required for ciliary elongation from steady state length. Thus, we hypothesize that lithium-induced ciliary elongation occurs through a mechanism that involves a supply of additional ciliary membrane through endocytosis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3