Moxifloxacin-mediated killing of Mycobacterium tuberculosis involves respiratory downshift, reductive stress, and ROS accumulation

Author:

Shee Somnath,Singh Samsher,Tripathi Ashutosh,Thakur Chandrani,Kumar T Anand,Das Mayashree,Yadav Vikas,Kohli Sakshi,Rajmani Raju S.,Chandra Nagasuma,Chakrapani Harinath,Drlica Karl,Singh AmitORCID

Abstract

AbstractMoxifloxacin is central to treatment of multidrug-resistant tuberculosis. Effects of moxifloxacin on Mycobacterium tuberculosis redox state were explored to identify strategies for increasing lethality and reducing the prevalence of extensively resistant tuberculosis. A non-invasive redox biosensor and an ROS-sensitive dye revealed that moxifloxacin induces oxidative stress correlated with M. tuberculosis death. Moxifloxacin lethality was mitigated by supplementing bacterial cultures with an ROS scavenger (thiourea), an iron chelator (bipyridyl), and, after drug removal, an antioxidant enzyme (catalase). Lethality was also reduced by hypoxia and nutrient starvation. Moxifloxacin increased the expression of genes involved in the oxidative stress response, iron-sulfur cluster biogenesis, and DNA repair. Surprisingly, and in contrast with Escherichia coli studies, moxifloxacin decreased expression of genes involved in respiration, suppressed oxygen consumption, increased the NADH/NAD+ ratio, and increased the labile iron pool in M. tuberculosis. Lowering the NADH/NAD+ ratio in M. tuberculosis revealed that NADH-reductive stress facilitates an iron-mediated ROS surge and moxifloxacin lethality. Treatment with N-acetyl cysteine (NAC) accelerated respiration and ROS production, increased moxifloxacin lethality, and lowered the mutant prevention concentration. Moxifloxacin induced redox stress in M. tuberculosis inside macrophages, and co-treatment with NAC potentiated the anti-mycobacterial efficacy of moxifloxacin during nutrient starvation, inside macrophages, and in mice where NAC restricted the emergence of resistance. Thus, oxidative stress, generated in a novel way, contributes to moxifloxacin-mediated killing of M. tuberculosis. The results open a way to make fluoroquinolones more effective anti-tuberculosis agents and provide a mechanistic basis for NAC-mediated enhancement of fluoroquinolone lethality in vitro and in vivo.Author SummaryA new paradigm was revealed for stress-mediated bacterial death in which moxifloxacin treatment of M. tuberculosis decreases respiration rate (respiration increases in E. coli). Although moxifloxacin-induced, ROS-mediated bacterial death was observed, it derived from elevated levels of NADH and iron, a phenomenon not seen with antibiotic-treated E. coli. Nevertheless, stimulation of respiration and ROS by N-acetyl cysteine (NAC) enhanced moxifloxacin-mediated killing of M. tuberculosis, thereby reinforcing involvement of ROS in killing. NAC stimulation of moxifloxacin-mediated killing of M. tuberculosis and restriction of the emergence of resistance in a murine model of infection emphasize the importance of lethal action against pathogens. The work, plus published benefits of NAC to TB patients, encourage studies of NAC-based enhancement of fluoroquinolones.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluoroquinolone heteroresistance, antimicrobial tolerance, and lethality enhancement;Frontiers in Cellular and Infection Microbiology;2022-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3