Bidirectional modulation of neuronal excitability via ionic actuation of potassium

Author:

Verardo ClaudioORCID,Jolivet RenaudORCID,Mele Leandro JulianORCID,Giugliano MicheleORCID,Palestri PierpaoloORCID

Abstract

AbstractPotassium K+ is a fundamental actor in the shaping of action potentials, and its concentration in the extracellular microenvironment represents a crucial modulator of neural excitability. Yet, its employment as a neuromodulation modality is still in its infancy. Recent advances in the technology of ionic actuators are enabling the control of ionic concentrations at the spatiotemporal scales of micrometers and milliseconds, thereby holding the promise of making the control of K+ concentration a key enabling technology for the next generation of neural interfaces. In this regard, a theoretical framework to understand the possibilities and limits offered by such technology is pivotal. To this aim, we exploit the Hodgkin-Huxley modeling framework, augmented to account for the perturbation of extracellular K+ concentration. We leverage methods of bifurcation analysis to investigate which regimes of electrical activity arise in the space of the input variables, namely the extent of ionic actuation and the synaptic current. We show that, depending on the type of target neuron, switchings of the class of excitability may occur in such space. These effects could rule out the possibility of eliciting tonic spiking when the extracellular K+ concentration is assumed as a sole control input. Building upon these findings, we show in simulations how to address the problem of neuromodulation via ionic actuation in a principled fashion. In this respect, we account for a bidirectional scenario, namely from the perspective of both inhibiting and stimulating electrical activity. We then provide a first-order motivation for the switchings of neural excitability in terms of the conductances of the K+-selective channels. Finally, we introduce a Pinsky-Rinzel-like model to investigate the effects of performing the ionic actuation locally at the neural membrane.Author summaryNeural interfaces rely on technologies to sense and perturb the electrical activity of neurons. For the latter aim, many strategies have been established to date, each one targeting a different actor involved in the electrophysiology of neurons. Examples include electrical, chemical, and optogenetic techniques. However, the main actors that shape neuronal signals, namely ions such as potassium K+, are still not directly targeted. Recent advances in bioelectronic technologies are enabling the manipulation of ionic concentrations as a viable strategy for neuromodulation, which we refer to as ionic actuation. These findings come mainly from the experimental literature, and the theoretical understanding of how ionic actuation can be used to shape neural activity is still lacking. This paper aims to help fill this gap, adopting the ionic actuation of K+ as a case study. Our results could guide the design and control of novel neural interfaces targeting the ionic composition of cellular fluids. Moreover, they may suggest novel therapies for pathologies related to impairments in the regulation of ionic homeostasis, such as drug-resistant epilepsy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3