5′ transgenes drive leaky expression of 3′ transgenes in inducible bicistronic vectors

Author:

Osanai YasuyukiORCID,Xing Yao Lulu,Kobayashi Kenta,Homman-Ludiye Jihane,Cooray Amali,Poh Jasmine,Ohno Nobuhiko,Merson Tobias D.

Abstract

AbstractMolecular cloning techniques enabling contemporaneous expression of two or more protein-coding sequences in a cell type of interest provide an invaluable tool for understanding the molecular regulation of cellular functions. DNA recombination employing the Cre-lox system is commonly used as a molecular switch for inducing the expression of recombinant proteins encoded within a bicistronic cassette. In such an approach, the two protein-coding sequences are separated by a 2A peptide or internal ribosome entry site (IRES), and expression is designed to be strictly Cre-dependent by using a lox-STOP-lox cassette or flip-excision (FLEX) switch. However, low-level or ‘leaky’ expression of recombinant proteins is often observed in the absence of Cre activity, potentially compromising the utility of this approach. To investigate the mechanism of leaky gene expression, we generated pCAG-lox-GFP-STOP-lox-Transgene A-2A-Transgene B vectors, which are designed to express nuclear-targeted GFP in the absence of Cre, and express both transgenes A and B after Cre-mediated recombination. We found that cells transfected with these bicistronic vectors exhibited low-level Cre-independent expression specifically of the transgene positioned 3′ of the 2A peptide. We observed similar results in vivo by viral transduction of the adult mouse cerebral cortex with AAV-mutagenesis of putative transcription factor binding sites that the 5′ transgene confers promoter-like activity that drives expression of the 3′ transgene. Finally, we demonstrate that inclusion of an additional lox-STOP-lox cassette between the 2A sequence and 3′ transgene dramatically reduces the extent of Cre-independent leaky gene expression. Our findings highlight that caution should be applied to the use of Cre-dependent bicistronic constructs when tight regulation of transgene expression is desired and provide a guide to preventing leaky gene expression when the expression of more than one protein is required.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3