A Mouse Model Of Binge Alcohol Consumption andBurkholderiaInfection

Author:

Jimenez VictorORCID,Moreno Ryan,Settles Erik,Currie Bart JORCID,Keim Paul,Monroy Fernando P.ORCID

Abstract

AbstractBackgroundBinge drinking, a common form of alcohol consumption, is associated with increased mortality and morbidity; yet, its effects on the immune system’s ability to defend against infectious agents are poorly understood.Burkholderia pseudomallei, the causative agent of melioidosis can occur in healthy humans, yet binge alcohol use is progressively being recognized as a major risk factor. Although our previous studies demonstrated that binge alcohol exposure results in reduced alveolar macrophage function and increasedBurkholderiavirulencein vitro, no experimental studies have investigated the outcomes of binge alcohol onBurkholderiaspp. infectionin vivo.Principal FindingsWe used the close genetic relatives ofB. pseudomallei, B. thailandensisE264 andB. vietnamiensis, as useful BSL-2 model systems. Eight-week-old female C57BL/6 mice were administered alcohol comparable to human binge drinking episodes (4.4 g/kg) or PBS intraperitoneally 30 min before a non-lethal intranasal infection. In an initialB. thailandensisinfection (3 x 105), bacteria accumulated in the lungs and disseminated to the spleen in alcohol administered mice only, compared with PBS treated mice at 24 h post-infection (PI). The greatest bacterial load occurred withB. vietnamiensis(1 x 106) in lungs, spleen, and brain tissue by 72 h PI. Pulmonary cytokine expression (TNF-α, GM-CSF) decreased, while splenic cytokine (IL-10) increased in binge drunk mice. Increased lung and brain permeability was observed as early as 2 h post alcohol administrationin vivo.Trans-epithelial electrical resistance (TEER) was significantly decreased, while intracellular invasion of non-phagocytic cells increased with 0.2% v/v alcohol exposurein vitro.ConclusionsOur results indicate that a single binge alcohol dose suppressed innate immune functions and increased the ability of less virulentBurkholderiastrains to disseminate through increased barrier permeability and intracellular invasion of non-phagocytic cells.Author SummaryBurkholderia pseudomalleicauses the disease melioidosis, which occurs in most tropical regions across the globe. Exposure rarely evolves to significant disease in the absence of specific comorbidities, such as binge alcohol intoxication. In susceptible hosts, the disease is primarily manifested as pneumonic melioidosis and can be rapidly fatal if untreated. In this study, we utilizedB. thailandensis, a genetically similar strain toB. pseudomallei, and opportunisticB. vietnamiensis, a known human pathogen that utilizes similar virulence strategies asB. pseudomalleiin immunocompromised and cystic fibrosis patients. The study investigates the impact of a single binge alcohol episode on infectivity and immune responsein vivo. We show that a single binge alcohol episode prior to inhalingBurkholderiaspecies increases bacterial spread to the lungs and brain. We also identify alcohol-induced tissue permeability and epithelial cell invasion as modes of action for greater bacterial spread and survival inside the host. Our results support the public health responses being developed in melioidosis-endemic regions that emphasize the nature of binge drinking as a prime concern, especially around potential times of exposure to environmentalB. pseudomallei.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. Strategies for intracellular survival of Burkholderia pseudomallei;Front Microbiol,2011

2. Alcohol-Induced Inhibition of Alveolar Macrophage Oxidant Release in Vivo and in Vitro

3. Balda MS , Matter K. Size-selective assessment of tight junction paracellular permeability using fluorescently labelled dextrans. 2007;(1):1–2.

4. Acetaldehyde disrupts tight junctions and adherens junctions in human colonic mucosa: protection by EGF and L-glutamine;Am J Physiol Gastrointest Liver Physiol [Internet],2005

5. Exposure to Ethanol Up-Regulates the Expression of Mycobacterium avium Complex Proteins Associated with Bacterial Virulence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3