GLUCOCORTICOIDS REGULATE MITOCHONDRIAL FATTY ACID OXIDATION IN FETAL CARDIOMYOCYTES

Author:

Ivy Jessica R.,Carter Roderic N.,Zhao Jin-Feng,Buckley Charlotte,Urquijo Helena,Rog-Zielinska Eva A.,Panting Emma,Hrabalkova Lenka,Nicholson Cara,Agnew Emma J.,Kemp Matthew W.,Morton Nicholas M.,Stock Sarah J.,Wyrwoll Caitlin,Ganley Ian G.,Chapman Karen E.

Abstract

ABSTRACTThe late gestational rise in glucocorticoids contributes to the structural and functional maturation of the perinatal heart. Here, we hypothesised that glucocorticoid action contributes to the metabolic switch in perinatal cardiomyocytes from carbohydrate to fatty acid oxidation. In primary mouse fetal cardiomyocytes, dexamethasone treatment induced expression of genes involved in fatty acid oxidation and increased mitochondrial oxidation of palmitate, dependent upon glucocorticoid receptor (GR). Dexamethasone did not, however, induce mitophagy or alter the morphology of the mitochondrial network. In neonatal mice, dexamethasone treatment induced cardiac expression of fatty acid oxidation genes in vivo. However, dexamethasone treatment of pregnant C57Bl/6 mice at embryonic day (E)13.5 or E16.5 failed to induce fatty acid oxidation genes in fetal hearts assessed 24 hours later. Instead, at E17.5, fatty acid oxidation genes were down-regulated by dexamethasone, as was GR itself. PGC-1α, required for glucocorticoid-induced maturation of primary mouse fetal cardiomyocytes in vitro, was down-regulated in vivo in fetal hearts at E17.5, 24 hours after dexamethasone administration. Similarly, following a course of antenatal corticosteroids in a sheep model of preterm birth, both GR and PGC-1α were down-regulated in fetal heart. These data suggest endogenous glucocorticoids support the perinatal switch to fatty acid oxidation in cardiomyocytes through changes in gene expression rather than gross changes in mitochondrial volume or mitochondrial turnover. Moreover, our data suggest that treatment with exogenous glucocorticoids may interfere with normal fetal heart maturation, possibly by down-regulating GR. This has implications for clinical use of antenatal corticosteroids when preterm birth is considered a possibility.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3