Brain age prediction using fMRI network coupling in youths and associations with psychiatric symptoms

Author:

Lund Martina J.ORCID,Alnæs DagORCID,de Lange Ann-MarieORCID,Andreassen Ole A.ORCID,Westlye Lars T.ORCID,Kaufmann TobiasORCID

Abstract

AbstractObjectiveMagnetic resonance imaging (MRI) has shown that estimated brain age is deviant from chronological age in various common brain disorders. Brain age estimation could be useful for investigating patterns of brain maturation and integrity, aiding to elucidate brain mechanisms underlying these heterogeneous conditions. Here, we examined functional brain age in two large samples of children and adolescents and its relation to mental health.MethodsWe used resting-state fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC; n=1126, age range 8-22 years) to estimate functional connectivity between brain networks, and utilized these as features for brain age prediction. We applied the prediction model to 1387 individuals (age range 8-22 years) in the Healthy Brain Network sample (HBN). In addition, we estimated brain age in PNC using a cross-validation framework. Next, we tested for associations between brain age gap and various aspects of psychopathology and cognitive performance.ResultsOur model was able to predict age in the independent test samples, with a model performance of r=0.54 for the HBN test set, supporting consistency in functional connectivity patterns between samples and scanners. Linear models revealed a significant association between brain age gap and psychopathology in PNC, where individuals with a lower estimated brain age, had a higher overall symptom burden. These associations were not replicated in HBN.DiscussionOur findings support the use of brain age prediction from fMRI-based connectivity. While requiring further extensions and validations, the approach may be instrumental for detecting brain phenotypes related to intrinsic connectivity and could assist in characterizing risk in non-typically developing populations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3