“Multi-Agent” Screening Improves the Efficiency of Directed Enzyme Evolution

Author:

Yang Tian,Ye Zhixia,Lynch Michael D.ORCID

Abstract

AbstractEnzyme evolution has enabled numerous advances in biotechnology. However, directed evolution programs can still require many iterative rounds of screening to identify optimal mutant sequences. This is due to the sparsity of the fitness landscape, which in turn, is due to “hidden” mutations that only offer improvements synergistically in combination with other mutations. These “hidden” mutations are only identified by evaluating mutant combinations, necessitating large combinatorial libraries or iterative rounds of screening. Here, we report a multi-agent directed evolution approach that incorporates diverse substrate analogues in the screening process. With multiple substrates acting like multiple agents navigating the fitness landscape, we are able to identify “hidden” mutant residues that impact substrate specificity without a need for testing numerous combinations. We initially validate this approach in engineering a malonyl-CoA synthetase for improved activity with a wide variety of non-natural substrates. We found that “hidden” mutations are often distant from the active site, making them hard to predict using popular structure-based methods. Interestingly, many of the “hidden” mutations identified in this case are expected to destabilize interactions between elements of tertiary structure, potentially affecting protein flexibility. This approach may be widely applicable to accelerate enzyme engineering. Lastly, multi-agent system inspired approaches may be more broadly useful in tackling other complex combinatorial search problems in biology.Highlights- “Multi-agent” screening improves directed evolution.- The incorporation of multiple substrates leads to the identification of “hidden” mutations, which can be hard to identify through one substrate.- “Hidden” mutations are often remote from the active site and are expected to interrupt stabilizing side-chain interactions, thus increasing enzyme flexibility.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3