Prediction of Whole-Cell Transcriptional Response with Machine Learning

Author:

Eslami Mohammed,Borujeni Amin Espah,Doosthosseini Hamid,Vaughn Matthew,Eramian Hamed,Clowers Katie,Gordon D. Benjamin,Gaffney Niall,Weston Mark,Becker Diveena,Dorfan Yuval,Fonner John,Urrutia Joshua,Corbet Carolyn,Zheng George,Stubbs Joe,Cristofaro Alexander,Maschhoff Paul,Singer JedediahORCID,Voigt Christopher A,Yeung Enoch

Abstract

AbstractApplications in synthetic and systems biology can benefit from measuring whole-cell response to biochemical perturbations. Execution of experiments to cover all possible combinations of perturbations is infeasible. In this paper, we present the host response model (HRM), a machine learning approach that takes the cell response to single perturbations as the input and predicts the whole cell transcriptional response to the combination of inducers. We find that the HRM is able to qualitatively predict the directionality of dysregulation to a combination of inducers with an accuracy of >90% using data from single inducers. We further find that the use of known prior, known cell regulatory networks doubles the predictive performance of the HRM (an R2 from 0.3 to 0.65). This tool will significantly reduce the number of high-throughput sequencing experiments that need to be run to characterize the transcriptional impact of the combination of perturbations on the host.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3