Towards guided mutagenesis: Gaussian process regression predicts MHC class II antigen mutant binding

Author:

Bell David R.ORCID,Chen Serena H.ORCID

Abstract

AbstractAntigen-specific immunotherapies (ASI) require successful loading and presentation of antigen peptide into the major histocompatibility complex (MHC) binding cleft. One route of ASI design is to mutate native antigens for either stronger or weaker binding interaction to MHC. Exploring all possible mutations is costly both experimentally and computationally. To reduce experimental and computational expense, here we investigate the minimal amount of prior data required to accurately predict the relative binding affinity of point mutations for peptide-MHC class II (pMHCII) binding. Using data from different residue subsets, we interpolate pMHCII mutant binding affinities by Gaussian process (GP) regression of residue volume and hydrophobicity. We apply GP regression to an experimental dataset from the Immune Epitope Database, and theoretical datasets from NetMHCIIpan and Free Energy Perturbation calculations. We find that GP regression can predict binding affinities of 9 neutral residues from a 6-residue subset with an average R2 coefficient of determination value of 0.62 ± 0.04 (±95% CI), average error of 0.09 ± 0.01 kcal/mol (±95% CI), and with an ROC AUC value of 0.92 for binary classification of enhanced or diminished binding affinity. Similarly, metrics increase to an R2 value of 0.69 ± 0.04, average error of 0.07 ± 0.01 kcal/mol, and an ROC AUC value of 0.94 for predicting 7 neutral residues from an 8-residue subset. Our work finds that prediction is most accurate for neutral residues at anchor residue sites without register shift. This work holds relevance to predicting pMHCII binding and accelerating ASI design.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3